DEVELOPING CREDIT RISK SCORE USING SAS PROGRAMMING

Presenter: Amos Odeleye

DISCLAIMER

- Opinions expressed are strictly and wholly of the presenter and not of SAS, FICO, Credit Bureau, past employers, current employer or any of their affiliates
- SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries
- Other brand and product names are trademarks of their respective companies

ABOUT THIS PRESENTATION

- Presented at Philadelphia-area SAS User Group (PhilaSUG) Fall 2018 meeting:
 - □ Date: TUESDAY, October 30th, 2018
 - □ Venue: Janssen (Pharmaceutical Companies of Johnson & Johnson)
- This presentation is an introductory guide on how to develop an inhouse Credit Risk Score using SAS programming
- Your comment and question are welcomed, you can reach me via email: <u>OduaTechnology@gmail.com</u>

ABSTRACT

- Credit Risk Score is an analytical method of modeling the credit riskiness of individual borrowers prospects and existing customers.
- While there are numerous generic, *one-size-fit-all* Credit Risk scores developed by vendors, there are several factors increasingly driving the development of in-house Credit Risk Score.
- This presentation will introduce the audience on how to develop an in-house Credit Risk Score using SAS programming, Reject inference methodology, and Logistic Regression.

(c)2018 Amos Odeleye

WHY SAS FOR CREDIT RISK?

• **S**: Standardization

• **A**: Assurance of quality

• S: Scalability

SOME FINANCIAL CREDIT RISK JOB OPPORTUNITIES

- Data Analyst
- Risk Analyst
- Business Analyst
- Model Developer
- Model Validation Analyst
- Portfolio Risk Manager

OVERVIEW OF FINANCIAL RISK MANAGEMENT

RISK MANAGEMENT

- Organization Risk Appetite:
 - □ Firms should select the type and level of risk that's appropriate for them to assume
- Risk Management (A-Q-M-M):
 - □ **A**ssess: Identify risk
 - Quantify: Measuring and Estimating
 - □ Manage: Avoid, transfer, keep, mitigate, or eliminate
 - □ Monitor: Evaluate the process and make necessary adjustment

FINANCIAL RISK CLASSIFICATION (C-L-O-M-O)

- Credit Risk:
 - Default, Recovery, Collections, Fraud
- <u>L</u>iquidity Risk:
 - Funding, Trading
- Operational Risk:
 - Operational weaknesses and breakdowns
- Market Risk:
 - Market price such as Interest rate, Foreign exchange, Equity, and Commodity price
- Others:
 - Not already classified above.
 - Including but not limited to Model risk, Compliance risk, Strategic risk and Reputational risk

SOME FINANCIAL REGULATORS

o Global:

- □ Bank for International Settlements (BIS)
- □ BASEL Committee on Banking Supervision (BCBS)
- □ Financial Stability Board (FSB)

• United States:

- Federal Reserve Bank
- □ U.S. Treasury/Office of the Comptroller of the Currency (OCC)
- □ Federal Deposit Insurance Corporation (FDIC)
- □ Consumer Financial Protection Bureau (CFPB)

Canada:

- $lue{}$ Bank of Canada
- □ Canada Deposit Insurance Corporation
- □ Office of the Superintendent of Financial Institutions

• United Kingdom:

- □ Bank of England
- □ HM Treasury
- □ Financial Services Compensation Scheme

CREDIT RISK SCORE

11

What is It and What is Not

CREDIT RISK SCORE:

- Is a Predictive modeling approach used to evaluate the level of credit riskiness associated with new applicants or *booked* customers
- Does not specifically identify "good" (positive behavior) or "bad" (negative behavior) individuals
- It is a Rank-Ordering predictive estimator that provides a *Statistical Measure* (odds or probability) that an individual with given attributes will be "GOOD" or "BAD"
- □ This Statistical Measure, transformed or "scaled" into a *Score* along with other business and strategy considerations are used in making financial decisions

CREDIT RISK SCORE: THE PIONEER

- Fair & Isaac company, FICO (1956) pioneered the development of credit risk score
- FICO Score is a generic score used in 80+ countries
- FICO Score is designed to *Rank-Order Customer's risk* based on the information in the consumer's credit file
- FICO Score provides an overview summary of the information on a consumer's credit file.
 - A single 3-digit number ranging from 300-850 which rankorders consumers according to risk
 - □ Several versions are available including industry-tailored scores such as Bankcard or Auto score
 - □ The higher the score, the lower the future risk of *default* i.e., "BAD"

CREDIT RISK SCORE: HOW IT IS DEVELOPED

- o Generic Score:
 - □ Such as FICO Score, using CRA data for score development
- Vendor Score:
 - □ Developed by Vendor for the financial institution using CRA and/or in-house data for score development
- o In-house Score:
 - □ Developed in-house modelers using CRA and/or in-house data

CREDIT RISK SCORE: THE CUSTOMER LIFECYCLE

• Customer Marketing:

□ Who is our target customer? Market segmentation? Pricing? Product offering/Cross-Sell? Channel?

Customer Originations:

- Also known as Underwriting or Acquisitions
- How are customer selected and "booked"?

• Customer Existing Account Management:

Once the customer is "booked", how is the relationship maintained, controlled, and grown?

• Customer Collections and Recovery:

□ Some customers will default on their obligations, how and what treatments should be deployed to encourage payment and restore customers to non-delinquent status?

• Customer Fraud Management:

- □ First Party Fraud
- □ Third Party Fraud
- Synthetic Fraud

RISK SCORES ACROSS CUSTOMER LIFE CYCLE

- Application (or Acquisition) Score
- Behavior Score
- Collection Score
- Recovery Score
- Fraud Score

CREDIT RISK SCORE: WHY DEVELOP IN-HOUSE?

Some of the factors driving increased used of in-house developed risk scores:

- Reduced Cost
- Increased Regulation
- Improved customer experience
- Better software for building models
- Efficiency and process improvement
- Creating value and boosting profitability
- Ease of access to sizeable and reliable data
- Availability of greater educational material and training

RISK SCORE: SOME MODELING APPROACHES

- Logistic Regression
 - □ Appropriate for Acquisition Risk Score used in Approve-Decline decision
 - □ Input and Outputs are clearly and well defined
 - □ Has good interpretability with business implications
 - Internal and External regulatory impact and compliance
 - □ Predicts Probability of Default (i.e., "BAD")
 - ightharpoonup Probability is scaled into scores ightharpoonup Score = Offset + Factor*Ln(odds)
- Decision Tree
- Neutral Network
- Discriminant Analysis
- Support Vector Machine

Random

Error

Population

Linear component

Independent

component

Variable

Population

y intercept

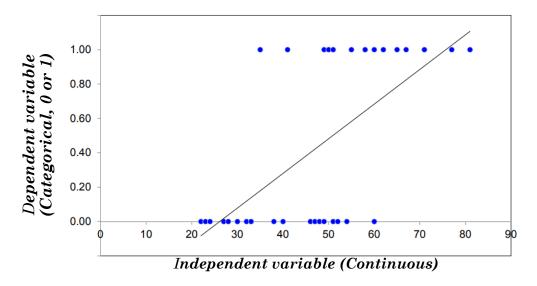
Dependent Variable

LOGISTIC REGRESSION MODELING

- Linear Regression:
 - Modeling the Outcome (y) vs. Predictors (x)
 - Statistical Assumptions: "L-I-N-E"
- From Linear Regression to Linear Models:
 - McCullagh & Nelder (1989) coined the term "Generalized Linear Model" and used "LINK" function to incorporate outcome variables that are not Normally Distributed
 - Logistic, Binomial, Multinomial, or Poisson
- The Logistic Regression Model "Logit":
 - Outcome is 0/1 so we model the probability "p" (bounded between 0 and 1)
 - * Probability to Odds: P/(1-P), to remove the upper bound (1)
 - Odds to Logit: Log (Odds) = A + BX, to remove the lower bound (0)

LINEAR VS. LOGISTIC REGRESSION MODELING

		Dependent Variable					
		Categorical	Continuous				
Independent Variable	Categorical	Chi-squared test	ANOVA				
	Continuous	Logistic Regression	Linear Regression				



For Illustrative purpose only

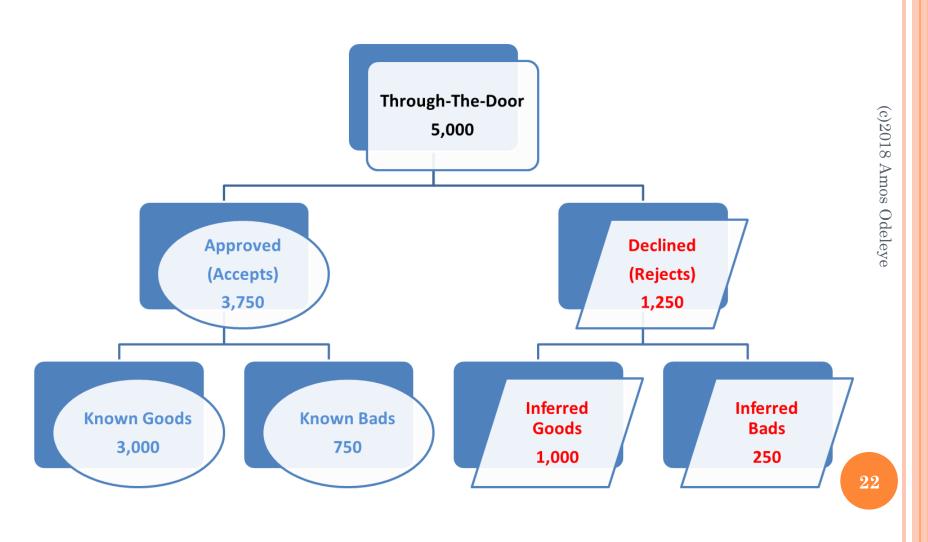
20

REJECT INFERENCE METHODS (ACQUISITION RISK SCORE MODELING)

- Assign All Rejects to "Bads"
- Approve all applications
- Bureau Performance
- Augmentation
- Simple Augmentation
- Fuzzy Augmentation
- Iterative Reclassification

- Assign Rejects in the same % to reflect the Accepts
- Nearest Neighbor
- Memory-Based Reasoning
- Bureau Score Migration
- Manual Adjustment of Weight Of Evidence
- Parceling

REJECT INFERENCE METHODS (ACQUISITION RISK SCORE MODELING)



For Illustrative purpose only

THE 5 PILLARS OF CREDIT RISK SCORE

- 35% Payment History "Credit Performance"
- 30% Amount Owed "Credit Utilization"
- 15% Length of History "Credit History"
- 10% Trades "Credit Mix"
- 10% Inquiries "Credit Newness"

ACQUISITION CREDIT RISK SCORE

Probability of Default "PD" Modeling

24

SAMPLE PORTFOLIO ACQUISITION DATA

Decision	APPL_ID	Acct_ID	Status	bad_90d_24m	INT_VAR1	INT_VAR2		INT_VAR50	CB_VAR1	CB_VAR2		CB_VAR500
APPROVE	1700001	1800001	good	1	5000	180		30	21715	555		0
APPROVE	1700002	1800002	good	1	5000	450		58	25755	8000		3000
APPROVE	1700003	1800003	bad	0	3000	3360		46	68175	0	•••	0
APPROVE	1700004	1800004	good	1	2500	0		24	30300	148	•••	1
APPROVE	1700005	1800005	good	1	3500	600	:	26	53530	0	•••	0
APPROVE	1700006	1800006	good	1	0	800		36	80800	525	•••	0
APPROVE	1700007	1800007	good	1	10000	1200		44	38380	0		0
APPROVE	1700008	1800008	good	1	450	555		27	69185	3000	•••	180
APPROVE	1700009	1800009	good	1	15000	765		32	58075	0		0
APPROVE	1700010	1800010	bad	0	16500	3360	•••	41	30300	0	•••	0
APPROVE	1700011	1800011	good	1	0	7896		34	87365	0		0
APPROVE	1700012	1800012	good	1	3000	0	•••	29	45450	700	•••	0
APPROVE	1700013	1800013	good	1	5000	2500		30	184325	825		0
APPROVE	1700014	1800014	good	1	3500	260	•••	37	77770	2500		0
APPROVE	1700015	1800015	bad	0	4162	0	•••	68	28280	0	•••	0
DECLINE	1700016				0	0		0	0	0		0
DECLINE	1700017				0	0	•••	0	0	0	•••	0
DECLINE	1700018				5000	2000	•••	68	37875	9000		250
DECLINE	1700019				750	500	•••	36	30300	47500	•••	3360
DECLINE	1700020				0	0	•••	0	0	0		0
DECLINE	1700021				0	0		0	0	0	•••	0
DECLINE	1700022				10000	655		22	27270	9050	•••	4500
DECLINE	1700023				2000	500	•••	45	57065	8000		8250
DECLINE	1700024				0	0		0	0	0	•••	0
DECLINE	1700025				0	0		0	0	0	•••	0

25

CREDIT RISK SCORE: MODEL DEVELOPMENT PROCESS

- Event definition
- Data preparation
- KGB Data Partition
- KGB Variable Analysis
- KGB Scorecard Modeling
- Reject inference, KIGB
- KIGB Data Partition
- KIGB Variable Analysis
- KIGB Scorecard Modeling
- KIGB Scorecard Scaling
- Scorecard Monitoring

EVENT "DEFAULT" DEFINITION

- When developing a credit risk score, the definition of default ("Bad") must be clearly established via:
 - □ Regulatory (e.g., Basel II, IFRS 9)
 - □ Risk analytics Portfolio Maturity or Strategic Analysis
- Two Default components:
 - □ **Default Event:** 60 DPD, 90 DPD, Bankruptcy, or Charge off
 - □ **Default Horizon:** 12-month, 18-month, or 24-month
- Event Modeling Assumption:
 - Future performance is reflected in past performance
- Example of a Default ("Bad") definition:
 - □ Any account that 90 DPD (days past due) in the 24 month on book or performance window

DATA PREPARATION

- ACCEPTS:
 - Approved population data
 - KGB: Known Good Bad
- REJECTS:
 - Declined population data
 - NKGB: Not Known Good Bad

PERFORMANCE (24-MONTH) & SAMPLE (2016'Q1) WINDOW

KBG DATA PARTITION

- KGB In-time sample (2016'Q1)
 - □ Train dataset, 70%
 - □ Validation dataset, 30%
- KGB Out-of-Time (OOT) sample:
 - □ OOT1 December 2015 data
 - □ *OOT2 April 2016 data*

KGB VARIABLE ANALYSIS

- Variable Transformation:
 - □ Binning (Weight of Evidence)
 - Widely accepted as the "Gold standard"
 - > Has good interpretability with business implications
 - □ Statistical Modeling:
 - □ Generalized Linear Model (GLM)
 - □ Generalized Addictive Model (GAM)
- Variable Reduction:
 - Bootstrapping
 - □ Factor Analysis
 - □ Information Value
 - Clustering Analysis
 - □ Kolmogorov–Smirnov
 - □ Principal Component Analysis

WEIGHT OF EVIDENCE (WOE)

SAS PROC HPBIN OR SAS E-MINER OR SAS MACRO

WOE =
$$\left[\ln\left(\frac{\%Bad_i}{\%Good_i}\right)\right] \times 100$$

Score Band	# Records	%Records	# Bad	# Good	% Bad	% Good	WOE	% Bad Rate
1-50	20,534	6.5%	1,581	18,953	16.1%	6.2%	95.30	7.7%
51-100	23,000	7.3%	1,382	21,618	14.1%	7.1%	68.69	6.0%
101-150	18,567	5.9%	888	17,679	9.0%	5.8%	44.58	4.8%
151-200	37,842	12.0%	1,362	36,480	13.8%	11.9%	14.91	3.6%
201-250	45,687	14.5%	1,325	44,362	13.5%	14.5%	-7.40	2.9%
251-300	55,698	17.6%	1,392	54,306	14.2%	17.8%	-22.69	2.5%
301-350	45,768	14.5%	961	44,807	9.8%	14.7%	-40.52	2.1%
351-400	33,458	10.6%	569	32,889	5.8%	10.8%	-62.01	1.7%
401-450	20,093	6.4%	241	19,852	2.5%	6.5%	-97.43	1.2%
451-500	15,008	4.8%	135	14,873	1.4%	4.9%	126.51	0.9%
Total	315,655	100.0%	9,836	305,819	100.0%	100.0%		

Notes:

 \sim SAS E-Miner: SAS Enterprise Miner

~PROC HPBIN: High-Performance SAS procedure

~SAS Macro: There are several WOE SAS macros available freely online or in SAS papers which can be customized

KGB Scorecard Modeling using SAS

```
Logistic Regression using SAS:
proc logistic data=ACCEPTS_KGB_data desc;
model bad_KGB = WOE_X1, WOE_X2, WOE_X3, etc / <options> ;
weight <sampling weights>;
run;
```

• Alternatively, you can perform Logistic Regression modeling using any analytical software with Statistical modeling capabilities e.g., R, STATA, SPSS, MATLAB, Mathematica, Python, Julia

REJECT INFERENCE: FUZZY AUGMENTATION METHOD

• Fuzzy Augmentation Method (FAM) is a two-step approach which incorporates not just the probability of a reject being bad, but also the possibility of being accepted in the first place.

• FAM Step 1 is Classification:

- □ Build a model using Known Goods and Bads data → The KGB model
- Score the REJECTS using the KGB model
- \square Determine p(good) and p(bad) for each REJECT
- ullet Weigh REJECTED "good" with p(good) and REJECTED "bad" with p(bad)

• FAM Step 2 is Augmentation:

- □ Combine REJECTS with ACCEPTS
 - Known Inferred Goods and Bads (KIGB) data

REJECT INFERENCE: FUZZY AUGMENTATION METHOD

Logistic Regression using SAS:

```
proc logistic data=ACCEPTS_KGB_data desc;
model bad_KGB = WOE_X1, WOE_X2, WOE_X3, etc / <options> ;
weight sample_wt;
score data=REJECT_RAW_data out = rejects_scored;
run;
```

• Alternatively, you can perform Logistic Regression modeling using any analytical software with Statistical modeling capabilities e.g., R, STATA, SPSS, MATLAB, Mathematica, Python, Julia

REJECT INFERENCE: FUZZY AUGMENTATION METHOD

```
/* SPLIT SCORED REJECTS INTO GOOD & BADS*/
  data rejects bad
       rejects good;
                                          /* KGB population */
     set rejects scored;
                                                                             (c)2018 Amos Odeley
                                          o data KGB data;
  run;
/* CREATE WEIGHTS FOR REJECTED BAD*/
                                               set accepts kgb data;
  data INFERRED rejects bad;
                                               bad KIGB=bad ever90 24m;
    set rejects bad;
                                               wgt KIGB=sample wt;
 bad KIGB=1;
  wgt KIGB=sample wt*PROB BAD;
                                               GROUP="ACCEPT KGB ";
   GROUP="REJECT BAD ";
                                            run;
  run:
                                          /* KIGB data = KBG + Inferred
/* CREATE WEIGHTS FOR REJECTED GOOD*/
                                          REJECTS */
  data INFERRED rejects good;
    set rejects good;
                                            data KIGB data;
  bad KIGB=0;
                                                set KGB data
    wgt KIGB=sample wt*(1-PROB BAD);
                                                    INFERRED rejects bad
   GROUP="REJECT GOOD";
                                                    INFERRED rejects good;
  run;
                                               by id;
                                            run;
```

For Illustrative purpose only

KIBG DATA PARTITION

- KGB In-time sample (2016'Q1)
 - □ Train dataset, 70%
 - □ Validation dataset, 30%
- KGB Out-of-Time (OOT) sample:
 - □ OOT1 December 2015 data
 - □ *OOT2 April 2016 data*

KIGB VARIABLE ANALYSIS

- o Variable Transformation:
 - □ Binning (Weight of Evidence):
 - Widely accepted as the "Gold standard"
 - > Has good interpretability with business implications
 - Statistical modeling:
 - □ Generalized Linear Model (GLM)
 - □ Generalized Addictive Model (GAM)
- o Variable Reduction:
 - Bootstrapping
 - Factor Analysis
 - Information Value
 - Clustering Analysis
 - □ Kolmogorov–Smirnov
 - Principal Component Analysis

KIGB SCORECARD MODELING USING SAS

Logistic Regression using SAS:

```
proc logistic data=KIGB_data desc;
model bad_KIGB = WOE_X1, WOE_X2, WOE_X3, etc / <options> ;
weight wgt_KIGB;
output out=<output of logit, probabilities, etc.> ;
run;
```

Alternatively, you can perform Logistic Regression modeling using any analytical software with Statistical modeling capabilities e.g., R, STATA, SPSS, MATLAB, Mathematica, Python, Julia

KIGB SCORECARD SCALING

- Probabilities transformed into *Scores* using **Scaling Parameters**:
 - Base Score
 - Base Odds
 - Point-to-Double-Odds

```
/*Sample Scaling Parameters*/
o %let PDO = 20;
o %let Base_Score = 200;
o %let Base_Odds = 50;
/* Compute FACTOR and OFFSET */
o factor= &PDO / log(2);
o offset = &Base_Score - (Factor*Log(&Base_Odds));
/* Compute Risk Score */
o Risk_Score = OFFSET + FACTOR*logit_kigb;
```

SCORECARD MONITORING METRICS

- o Divergence (D)
- Gini's Index (GINI)
- Vintage Analysis (VA)
- Override Analysis (OA)
- Kolmogorov–Smirnov (KS)
- EvA: Expected vs. Actual (EvA)
- Population Stability Index (PSI)
- Characteristic Stability Index (CSI)
- Total Population Stability Index (TPSI)
- Log Odds & Point-to-Double Analysis (PDO)
- Area Under Receiver Operating Curve (AUROC or simply ROC)

APPENDIX

41

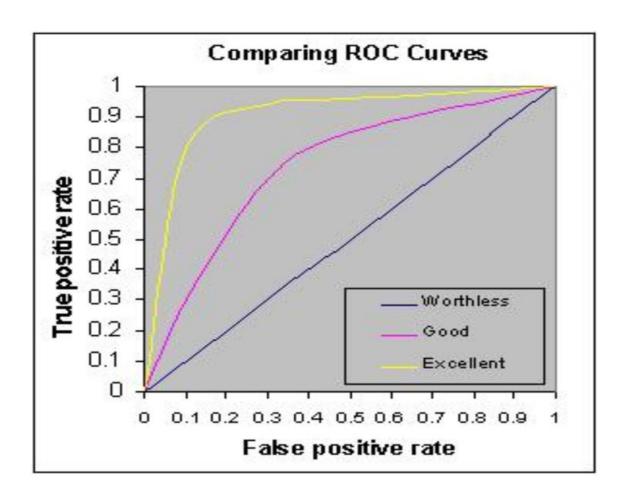
Scorecard Validation and Monitoring Charts

Population Stability Index								
Risk Score Range	TRAIN freq	VAL freq	TRAIN %	VAL %	% Difference	% Ratio	Natural Log of Ratio	Contribution to Index
< 350	2,500	2,345	10.51%	9.77%	0.74%	0.929633	-0.072965	0.000540
351 -< 400	2,503	2,401	10.53%	10.01%	0.52%	0.950694	-0.050563	0.000262
401 -< 450	2,805	2,402	11.80%	10.01%	1.79%	0.848690	-0.164061	0.002929
451 -< 500	2,177	2,403	9.16%	10.02%	-0.86%	1.093965	0.089809	0.000773
501 -< 550	2,444	2,404	10.28%	10.02%	0.26%	0.974856	-0.025465	0.000066
551 -< 600	2,509	2,405	10.55%	10.03%	0.53%	0.949995	-0.051299	0.000271
601 -< 650	2,001	2,406	8.42%	10.03%	-1.61%	1.191680	0.175364	0.002829
651 -< 700	2,512	2,407	10.57%	10.03%	0.53%	0.949651	-0.051661	0.000275
701 -< 750	2,098	2,408	8.82%	10.04%	-1.21%	1.137524	0.128854	0.001564
> 751	2,227	2,409	9.37%	10.04%	-0.68%	1.072074	0.069595	0.000470
							PSI =	1.00%

	EvA: Expected versus Actual Bad with Rank-ordering							
Risk Score Range	Expected Bads freq	Actual Bads freq	Expected %	Actual %	% Difference	% Ratio	Natural Log of Ratio	Contribution to Index
Low -< 350	8,769	8,339	36.88%	33.09%	3.80%	0.897099	-0.108589	0.004121
351 -< 400	7,261	6,796	30.54%	26.97%	3.58%	0.882936	-0.124503	0.004451
401 -< 450	3,619	4,292	15.22%	17.03%	-1.81%	1.118783	0.112241	0.002029
451 -< 500	1,982	2,239	8.34%	8.89%	-0.55%	1.066012	0.063925	0.000352
501 -< 550	818	1,468	3.44%	5.83%	-2.39%	1.693319	0.526691	0.012562
551 -< 600	523	1,012	2.20%	4.02%	-1.82%	1.827354	0.602869	0.010963
601 -< 650	323	326	1.36%	1.29%	0.07%	0.951828	-0.049371	0.000032
651 -< 700	285	528	1.20%	2.09%	-0.89%	1.745680	0.557144	0.004981
701 -< 750	140	141	0.59%	0.56%	0.03%	0.951828	-0.049371	0.000014
751 >- High	56	62	0.24%	0.25%	-0.01%	1.035721	0.035098	0.000003
							PSI =	3.95%

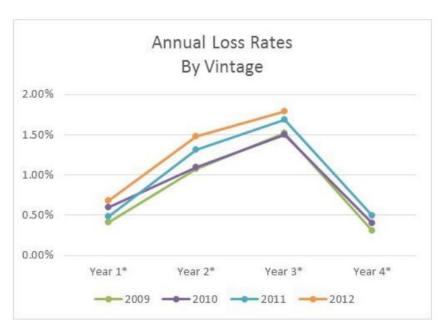
42

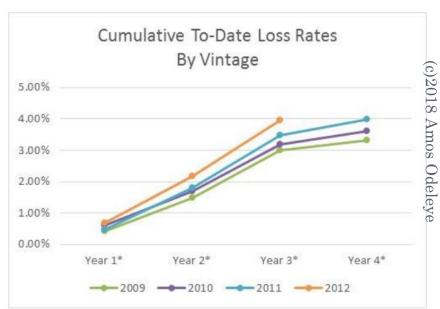
AREA UNDER RECEIVER OPERATING CURVE (AUROC)

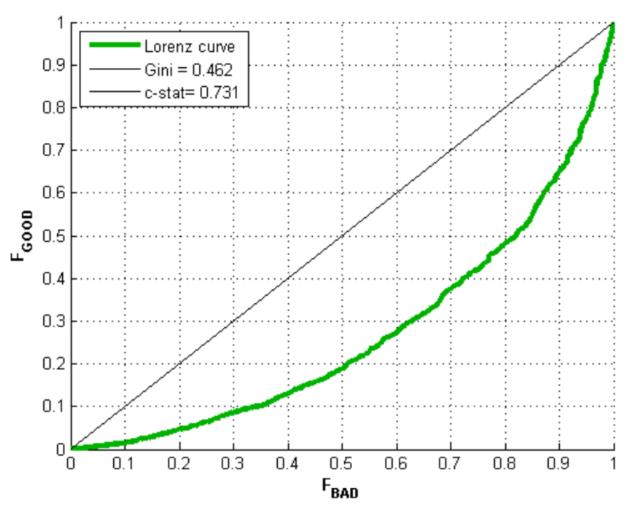


43

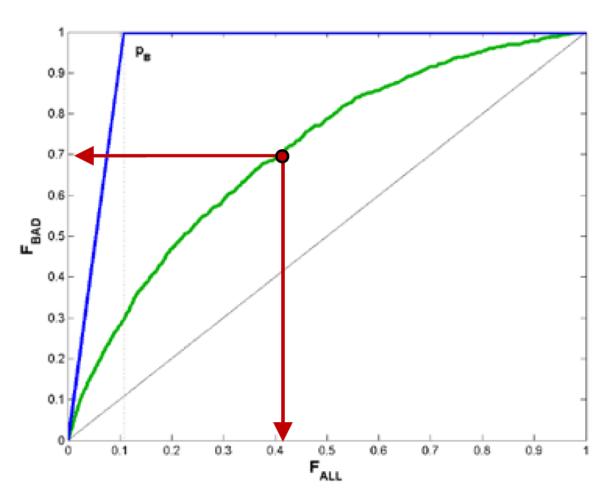
VINTAGE ANALYSIS







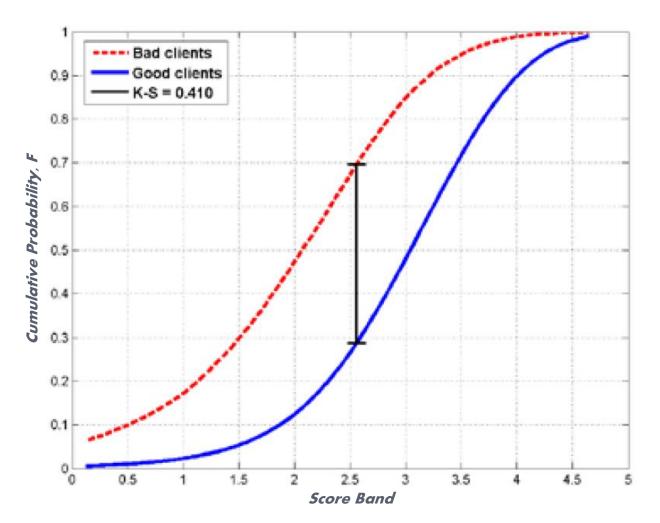
For Illustrative purpose only



Also known as Cumulative Accuracy Plot (CAP)

For Illustrative purpose only

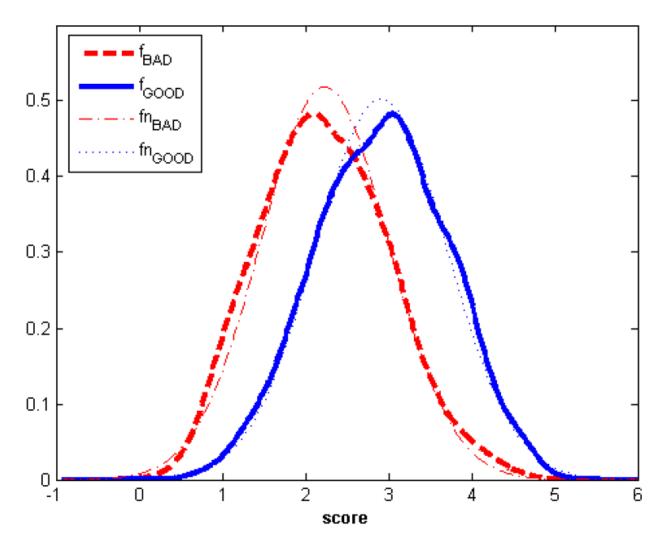
KOLMOGOROV-SMIRNOV (KS)



For Illustrative purpose only

(c)2018 Amos Odeleye

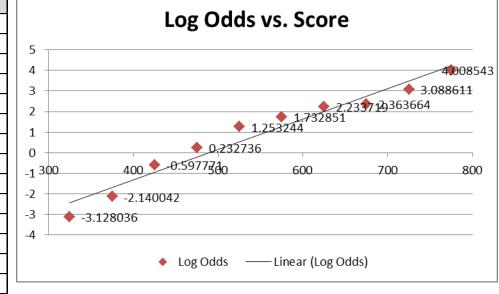
DIVERGENCE



For Illustrative purpose only

Log Odd and Point-to-Double-Odds (PDO)								
Risk Score Range	Score	Bads freq	Goods freq	Total freq	Bads %	Goods %	Odds	Log Odds
Low -< 350	325	8,769	1,231	10,000	36.88%	1.62%	0.043804	-3.128036
351 -< 400	375	7,261	2,739	10,000	30.54%	3.59%	0.117650	-2.140042
401 -< 450	425	3,619	6,381	10,000	15.22%	8.37%	0.550036	-0.597771
451 -< 500	475	1,982	8,018	10,000	8.34%	10.52%	1.262048	0.232736
501 -< 550	525	818	9,182	10,000	3.44%	12.05%	3.501686	1.253244
551 -< 600	575	523	9,477	10,000	2.20%	12.43%	5.656758	1.732851
601 -< 650	625	323	9,677	10,000	1.36%	12.69%	9.334518	2.233719
651 -< 700	675	285	9,715	10,000	1.20%	12.75%	10.629828	2.363664
701 -< 750	725	140	9,860	10,000	0.59%	12.94%	21.946574	3.088611
751 >- High	775	56	9,944	10,000	0.24%	13.05%	55.066565	4.008543

Score	Odds
200	50
220	100
240	150
260	200
280	250
300	300
320	350
340	400
360	450
380	500
400	550
420	600
440	650
460	700



Scaling Parameters:

0					
PDO	20				
Base Odds	50				
Base Score	200				

PDO = Ln(2) / Slope

For Illustrative purpose only

Conference + Papers + Lecture notes

- FICO World 2018: Credit Boot Camp Course
- o SAS Paper 344-2010: Improving Credit Risk Scorecards with Memory-Based Reasoning to Reject Inference with SAS® Enterprise Miner™ by Billie Anderson, Susan Haller, Naeem Siddiqi, James Cox, and David Duling, SAS Institute Inc.
- SAS Paper: Building Better Credit Scores using Reject Inference and SAS by Steve Fleming, Clarity Services Inc.
- SAS Paper ST-160: Reject Inference Methodologies in Credit Risk Modeling by Derek Montrichard, Canadian Imperial Bank of Commerce, Toronto, Canada
- Guoping Zeng, Qi Zhao, A rule of thumb for reject inference in credit scoring, Mathematical Finance Letters, Vol 2014 (2014), Article ID 2
- How to Measure Quality of Credit Scoring Models by Martin Řezáč and František Řezáč
- Population Stability and Model Performance Metrics Replication for Business Model at SunTrust Bank by Bogdan Gadidov and Benjamin McBurnett,)
- **FED**Perspectives: An Overview of the Current Expected Credit Loss Model (CECL) and Supervisory Expectations by Steve Merriett, Joanne Wakim, Shuchi Satwah
- Expanding the Use of Weight of Evidence and Information Value to Continuous Dependent Variables for Variable Reduction and Scorecard Development by Alec Zhixiao Lin and Tung-Ying Hsieh
- Introduction to Linear Regression and Logistic Regression by Jungwha "Julia" Lee, PhD, MPH (Biostatistics Collaboration Center Northwestern University)

SAS BOOKS & RESOURCES

- o Griffin, Hill, & Lim: Using SAS for Econometrics
- SAS Programming 1: Essentials, SAS Institute
- o SAS Programming 2: Data Manipulation Techniques, SAS Institute
- o Littell, Stroup, & Freund (2002). SAS for Linear Model
- Slaughter & Delwiche (2008). The Little SAS Book: A Primer
- Schreier (2008). PROC SQL by Example: Using SQL within SAS®
- Allison: Logistic Regression using SAS (Theory & Applications)
- Stokes, Davis, & Koch: Categorical Data analysis using the SAS System
- o Carpenter (2004). Carpenter's Complete Guide to the SAS Macro Language
- o Cody Ron (2018). Learning SAS by Examples
- Stokes, Davis, & Koch: Categorical Data analysis using the SAS System
- o Carpenter (2004). Carpenter's Complete Guide to the SAS Macro Language
- o Littell, Milliken, Stroup, Wolfinger, & Schabenberger (2006). SAS® for Mixed Models
- SAS® Certification Prep Guide: Base Programming for SAS®9, Fourth Edition
- o SAS® Certification Prep Guide: Advanced Programming for SAS®9, Fourth Edition
- SAS Documentation: https://support.sas.com/documentation/
- o SAS Procedure by Name search: https://support.sas.com/documentation/cdl/en/allprodsproc/63875/HTML/default/viewer.htm#a003135046.htm
- o SAS Procedure by Products: https://support.sas.com/documentation/cdl/en/allprodsproc/63875/HTML/default/viewer.htm#a003178332.htm
- SAS Global Forum (Annual event)
- SAS User Groups Local and Regional

TEXTBOOKS

- Rencher: Methods of Multivariate Analysis
- Baesens, Rosch, & Schenle: Credit Risk Analytics
- Hosmer & Lemeshow: Applied Logistic Regression
- o Crouhy, Galai, & Mark: Essential of Risk Management
- Kleinbaum & Klein: Logistic Regression, A Self Learning Text
- Lawrence & Solomon: Managing Customer Lending Business
- o Johnson & Wichern (2007). Applied Multivariate Statistical Analysis
- Lyn C. Thomas: Consumer Credit Models (Pricing, Profits and Portfolios)
- Mays & Lynas: Credit Scoring for Risk Managers (Handbook for Lenders)
- Wooldridge (2010). Econometric analysis of Cross sectional & Panel data
- o Lyn Thomas, Jonathan Crook & David Edelman. Credit Scoring and Its Applications
- Naeem Siddiqi: Intelligent Credit Scoring (Building and Implementing Better Credit Risk Scorecards)
- Sharda, Delan, & Turban: Business Intelligent and Business Analytics (Systems for Decision Support)
- (Electronic Version): StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/

TEXTBOOKS

- Hayashi: Econometrics
- Allen: Financial Risk Management
- Greene (2011). Econometric Analysis
- Kuhn & Johnson: Predictive Modeling
- Lange: Numerical Analysis for Statisticians
- Monahans: Numerical methods of Statistics
- Hull: Risk management & Financial institutions
- Lam: Enterprise Risk Management: From Incentives to Controls
- o Bluhm, Overbeck, & Wagner: Introduction to Credit Risk Modeling
- o Bouteille & Coogan-Pushner: Handbook of Credit Risk Management
- Friedman, Hastie, & Tibshirani (2009). The Elements of Statistical Learning
- o Kutner, Nachtsheim, Neter, & Li (2004). Applied Linear Statistical Models
- Stroup (2012). Generalized Linear Mixed Models
- P. McCullagh & J.A. Nelder (1989). Generalized Linear Models
- o T. J. Hastie & R. J. Tibshirani (1990). Generalized Additive Models
- o James, Witten, Hastie, & Tibshirani (2009). An Introduction to Statistical Learning

OCC LENDING HANDBOOKS:

- OCC Comptroller's Handbook: *Retail Lending*
 - https://www.occ.treas.gov/publications/publications-by-type/comptrollers-handbook/retail-lending/index-ch-retail-lending.html
- OCC Comptroller's Handbook: Credit Card Lending
 - https://www.occ.treas.gov/publications/publications-by-type/comptrollers-handbook/credit-card-lending/index-ch-credit-card-lending.html

Question or Comment

You can contact me at:
Amos Odeleye

OduaTechnology@gmail.com